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Nonuniform Electric Fields in Pulse 
Heated Wires I 

G. Loh6fer 2 

The influence of nonuniform electric fields on the measurement of the electrical 
conductivity in pulse-heated wires is studied analytically. Two causes for non- 
uniformity are considered: switching-on of an external voltage source (transient 
skin effect) and temperature-dependent change of the electrical conductivity. 
This problem usually has two strictly different time scales: a short one, on which 
the transient skin effect takes place, and a long one, on which heat conduction 
happens. Here, the short time scale is considered. 

KEY WORDS: electrical conductivity; measurement error; nonuniform fields; 
pulse heating; skin effect. 

1. I N T R O D U C T I O N  

Electrical conduct ivi ty  measurements  dur ing  short pulse heat ing experi- 

ments  usually assume [ 1 ], that  voltage U and current  I a long the wire of 
length 1 and  radius a are related to the electrical conduct ivi ty  a according 
to 

u(t) 1 I 
i ( t )  = a ( t )  7za 2 (1) 

However,  the use of Eq. (1) implicitly supposes uniformly distr ibuted 
electric fields and  current  densities across the wire. On  the other hand,  

according to Faraday ' s  law, quick changes of electric fields, which are 
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inevitable in pulse-heating experiments, result in additional induction 
fields and eddy currents disturbing any spatial uniformity. Well known 
is the skin effect after switching-on of a current. Because of its opposite 
direction, the inductively generated fields reduce in this case the originally 
homogeneous field continuously from the surface to the center of the wire. 
Besides switching-on, there are further origins for time dependent varia- 
tions and thus nonuniform electric fields during pulse-heating experiments: 

�9 change of the electrical conductivity due to temperature and phase 
change of the sample, 

�9 enlargement of the wire cross section because of volume expansion, 
and 

�9 magnetic pinch and convection of the molton material because of 
Lorentz forces between current filaments in the wire. 

Time-dependent variations of fields and the resulting skin effect in 
wires have been studied mainly in connection with sinusoidally alternating 
currents and its initial switching-on [ 2 4 ] .  However, the boundary condi- 
tions used in these calculations render an immediate application of these 
results on pulse-heating experiments, as, e.g., described in Ref. 1, difficult. 
This holds even for the work of Phung and Miles [-5], which studies the 
transient skin effect problem under consideration of a time-dependent 
conductivity. Here, however, the numerical treatment of this problem 
complicates a direct use of the reported data. 

The present paper is an onset to treat the skin effect in pulse-heated 
wires under consideration of a time varying electrical conductivity analyti- 
cally. Despite its inherent nonlinearity, an analytical treatment is possible, 
because the problem contains generally two different time scales: a short 
time scale at the beginning, on which field variations due to switching-on 
are strong but on which those due to conductivity changes are weak, and a 
long time scale, on which field variations due to conductivity changes play 
the important role but on which those due to the transient switching-on 
have already died out. Here we study the transient, or short, time scale 
effects only. 

The aim of this paper is to give an estimate of the systematic error 
that occurs when Eq. (1) is used for the determination of the electrical 
conductivity in pulse-heating experiments and to discuss the experimental 
conditions where this error is negligible. The applied boundary and initial" 
conditions try to model as well as possible the experimental situation 
described in Refs. 1, 3, and 6. In the following sections, we report only 
the essential mathematical results; details of the calculations will be given 
elsewhere. 



Electric Fields in Pulse Heated Wires 473 

2. FORMULATION OF THE PROBLEM 

The general experimental situation is shown in Fig. 1. A wire-shaped 
sample, whose radius a is much smaller than its length l, 

a~ l  (2) 

is fixed along the axis of a cylindrical experiment chamber of radius b. 
A time-dependent voltage source U(t) feeds a current into an electric circuit 
consisting of the sample and the chamber walls. For the sake of simplicity, 
the electrical resistance of the walls is considered to be negligible compared 
to that of the wire. We also assume that the influence of other conductors 

Fig. 1. Experimental arrangement showing the 
coordinates and the distances. The pulse-heated 
wire (shaded area) is fixed at the center of a 
cylindrical experiment chamber of electrically 
conducting (hatched) and nonconducting 
(cross-hatched) walls. A time-dependent voltage 
source, U(t), is applied to the wire. 
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in the circuit can be neglected. Due to the consideration of a time-varying 
electrical conductivity o-(T(x, t)), whose time dependence results from the 
time dependence of the temperature T(x, t), we have to account for the 
electrodynamic as well as thermodynamic behavior of the system. 

2.1. Electrodynamic Description 

The behavior of the electric field E(x, t), magnetic field B(x, t), and 
current density j(x, t) in the wire is sufficiently well described by the 
quasistationary Maxwell equations, in which the space charge and the 
displacement current term are neglected, and the usual Ohm's law 17] 

rot E(x, t) = -~/~3t B(x, t), 

rot B(x, t) = #oj(x, t), 

j(x, t) = a(T(x, t)) E(x, t) 

div E(x, t) = 0 

div B(x, t) = 0 (3) 

This set of equations holds as long as the characteristic time scale, the 
order of magnitude of which is estimated at the end of this section, is long 
compared to the inverse plasma and mean collision frequency of the elec- 
tron gas in the metal. Taking the rotational symmetry of the experimental 
arrangement and the condition of Eq. (2) into account, one obtains from 
Eq. (3) 

E(x, t)= E(r, t)ez, B(x, t)= B(r, t)e~o, 

j(x, t)=j(r, t)ez, T(x, t)= T(r, t) (4) 

when cylindrical coordinates with the z-axis along the center of the wire are 
used. 

The basic differential equation for the electric field in the wire can be 
derived immediately from Eq. (3) and can be expressed using Eq. (4) as 

P~P  ~PPJ E(P' ~) =~-zT t ~o 

where the following dimensionless variables are introduced: 

r t 
P = a '  z = a2poao (6) 

Here, a0=a (To)  denotes the electrical conductivity at the beginning of 
an experiment, or experiment part (e.g., at room temperature or melting 
temperature). 
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Under consideration of the Maxwell equations [Eq. (3)] and the 
previous assumptions, the boundary conditions for the electrical field result 
from an integration ~ E.  ds along the indicated path (dashed line), shown 
in Fig. 1, and from an integration ~ rot E. ds along a circle around the 
wire surface. Assuming, again, only radial dependences of the fields, i.e., 
neglecting and effects, we finally obtain the boundary conditions 

[E(p, z ) + p + E ( p ,  "~)lp= 1--U(z) l (7) 

for the electric field at the wire surface. Here, we used the notation 

p=ln(b/a) (8) 

Another requirement on E(p, ~) is its continuity inside the wire (especially 
at p = 0). As an initial condition we choose 

E(p,r)=O ~ U(T)-= 0 for z < 0  (9) 

In the following, we assume that the order of magnitude of the 
differential operators appearing in Eqs. (5) and (7) is of ord(1). This means 
that according to Eq. (6), field variations occur on a characteristic length 
scale of ord(a) and a characteristic time scale of ord(aa#oO0), which is 
typically ~ 10-7 s; see, e.g., Ref. 6. 

2.2. Thermodynamic Description 

Since the electrical resistivity p~l of a metal, which is the inverse of the 
electrical conductivity o, can, in a good approximation, be considered as a 
linearly increasing function of the temperature 

(7 o 
~7(T)- 1 + Apel,o(T-- To) (10) 

where Apel, o=aodpel/dT, we have to account for the time-dependent 
temperature change during the experiment. Provided that convection can 
be neglected, this is described by the heat conduction equation [8], which, 
taking Eq. (6) into account, reads 

pm(T) cp(T) lOT(p, 72) 

= a(T) E2(p, "c)- Q(T) 6(p - 1) (11) 
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The material specific quantity x(T) is defined as 

/•]/o O-o 
to(T) . -  (12) 

pro(T) cp(T) 

where pm(T) and cp(T) are the mass density and the specific heat, 
respectively, and where K is the characteristic thermal conductivity in the 
considered temperature range. The heat loss from the surface is denoted 
by Q. For  example, for tantalum, x(T) < 3 X 10 -4 over the entire reported 
temperature range [6]. Together with our previous assumptions about the 
order of magnitude of the differential operators lord(i)] ,  this estimation 
means that on the short time scale ( ~  10 -7 s) of the switching-on effect, we 
consider here, there is practically no heat conduction in the tantalum wire 
and, consequently, also no heat loss from its surface. Therefore, we neglect 
the corresponding terms in Eq. (11) and obtain 

Z-2(T) Apr o ~ T(p, z) = E2(p, z) (13) 

with 

Z 2( T ) -  pm(T) Cp(T) 
a(T) ao/~o a2 Apr o 

(14) 

The initial condition is supposed to be T(p, O) = To. For metals, at least for 
tantalum, the relative temperature change of the resistivity, i.e., Apel.O, is by 
far greater than the corresponding quantity of mass density or specific heat. 
Furthermore, the slight increase in the specific heat Cp with temperature is 
almost canceled by the slight decrease in the density Pm" Hence, the tem- 
perature dependence of Z-2(T) is almost completely determined by that of 
o-(T), which also assures that the right-hand side of Eq. (14) is positive. 
Therefore, we assume that 

Z-2(T) = Zo2(1 + Ape,,o(T-- To)) (15) 

where, according to Eq. (14), 

Z2 = z2( To) = a~Po a2 ~Pel, O (16) 
Pm, OCp, o 

3. SOLUTIONS 

In this section, only the highlights of the mathematical solutions are 
presented; the details will be given elsewhere. At first, let us consider the 
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solution of the heat balance equation, Eq. (13), for the present case. Under 
consideration of Eq. (t5) and the initial condition, it can immediately be 
integrated. Inserting this result into Eq. (10), we obtain the time-dependent 
conductivity 

(7( T(p, z) ) ( l + 2z2 f~ E2(p, r,) d~,) -~/2 - ( 1 7 )  
(70 

According to the boundary conditions given by Eq. (7), the order of 
magnitude of the electric field is E(p, Is)= ord(U(z)/l). Consequently, the 
integral term on the right-hand side of Eq. (17) is of the order of magnitude 
of 

1 
= (•0/I) 2 iO U2('~ ' )  dis ' (18)  

Provided that e is "small enough," about ~<�89 the right-hand side of 
Eq. (17) can be expanded in a power series, 

(7( T(p, r)) 
- Z 2 f- E2(p, Is') dr' + ... (19) 1 

(7 0 JO 

Note that, with l and a from Ref. 6, and for tantalum at room temperature, 
we find that (Zo/l) 2 = 7.6 x 10-7V 2. 

With Eq. (19) the final version of Eq. (5) then reads 

~p p E(p, r) =-~ e(p, ~) 1 - ZZo e2(p, ~') dis' + ... (20) 

As already mentioned, the integral term in Eq. (20) is of ord(e). This 
suggests to solve the nonlinear field equation by expansion in powers 
of ~ [9], 

E(p, Is) = e~ Is) + e~EI(p, Is) + "" (21) 

Provided that the experimental conditions result in a sufficiently small e, 
which is often satisfied, the truncation of the series after the first order 
usually gives a good approximations. Substituting Eq. (21) into Eqs. (20) 
and (7), and comparing the coefficients of e", we find for the order ao 

p-~pp~p Eo(p, r)=~-~Eo(p, z) 
(22) u(is)~ 

[Eo(p, IS)+ p +  Eo(p, ~)-- l jp=l=O 
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and for the order e ~ 

0 0 Z~3 {Eo(p, z)fo EZ(P'z')dr'} 
(23) 

0 
IEI(P, z )+p~pEl(P,Z)]p=l=O 

Both partial differential equations together with the proper boundary 
conditions are linear and can be calculated by standard mathematical 
methods. The complete solution of the first one is 

Eo(p ' .r)=U(z) ~ k~12Jo(2kp)~; U(z')exp{--22(z--~')} dr' 
I = 2kJl(2~)(2~p 2 + 1) (24) 

where Jo and J1 are the zeroth- and first-order Bessel functions, 
respectively, and the numbers 2k denote the positive real roots of 

Jo(2) -p2Jl()~ ) = 0 (25) 

The time dependence of the external voltage U(r) is determined by the 
experimental conditions. High-capacity power supplies are well described 
by a voltage jump from zero to a constant value U0 at r = 0. For this case 
we find 

Eo(p , r )= -~2[ l  - ~ 2J~ (26) 
k = l  )~kJl('~k)('~P 2q-1) J 

Equation (26) is represented in graphical form in Fig. 2. A more 
complicated situation occurs for a current-dependent voltage, e.g., 
U(~)=RI(z)+ 1/CS~oI(z ') &', which results from a power supply of low 
capacity C and high internal resistance R. Together with the definition 
Io(Q = 2rca2ao ~ Eo(p, z)p dp for the current of order e ~ Eq. (24) finally 
results in a linear integral equation for Io(z), 

RoIo(z) = -~ Io(e) g(r " f )  df + R Io(i) g'(z - 2) di (27) 

where g' denotes the derivative of 

~ 1  - exp{ 2 , - ' ~ k (~ -  r )} 
g(z -- ~') = 4 2 2 2 k = 1 2k(2k P + 1 ) 

l 
Ro - (28) 

flora 2 

With the detailed knowledge of Eo(p, z), we are able to calculate 
El(p, T.) from Eq. (23). However, since this solution is relatively cumber- 
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some in full generality, we consider here its asymptotic approximation for 
T--* oe only. On the other hand, because of the exponential decrease in 
time, this result becomes significant already after a few ~. Assuming a jump 
of U(v) at T = 0 (see above), we obtain for the electric field up to the first 
order, 

E ( p ,  T --* oo ) = e ~  z --+ oo ) + e l E ~ ( p ,  ~ ~ Go) + e2 . . . 

Uo 1 + e  2--- (29) _ = - -  + 2 /  o'~ 2 p + 1 -  
I Zo [-~-) 4 

Since the zeroth-order term of the electric field does not consider any 
temperature dependence of the conductivity, its asymptotic value is just the 
constant Uo/l (Fig. 2). This is different for the first-order term. Even after 
the switching-on effects (transient skin effect) have disappeared for ~ -~ o% 
there remains still a steady time-dependent change of the electrical fields 
and currents in the wire due to the continuously decreasing electrical con- 
ductivity with increasing temperature. The resulting decreasing current 
generates induced electric fields that point in the same direction as the 
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Fig. 2. Variation of the zeroth-order electric field, nor- 
malized to the constant external field U o / l  , as function 
of the normalized radial distance p and the normalized 
time r for p = 5 according to Eq.  (26) .  
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original ones. This is just inverse of the situation occurring during the 
switching-on. Consequently, as reflected by Eq. (29), the electric field 
strength is higher at the center of the wire than at its surface (inverse skin 
effect). 

4. SYSTEMATIC ERROR IN ELECTRICAL CONDUCTIVITY 
MEASUREMENTS 

According to Ohm's law, Eq. (3), the electrical conductivity is, in the 
present case, defined by 

j(p, z) 
a(T(p, r ) ) - - -  (30) 

E(p, z) 

With the definition for current I and voltage U, 

I 

I(z) = 2ha 2 fo j(p' r)p dp, U(p, z) = E(p, r)/l (31) 

an integration of Eq. (30) over the wire cross section results in Eq. (1), 
but only if the fields are spatially constant. As already mentioned, this 
condition is generally not satisfied during pulse-heating experiments. 
Nevertheless, since the only measurable quantities are the time-dependent 
current through the wire I(z) and the time-dependent voltage drop at the 
surface of the wire U(1, z), it is usually assumed that the quantity 

l I(z) (32) 
8(~:)  - -  ~ca2 U(1, z) 

at least approximates the real electrical conductivity for temperatures 
measured at the wire surface'a(T(1, z)); see, e.g., Refs. 1 and 6. In the 
following, we estimate the relative difference between the measured and the 
real (calculated) conductivity for this temperature: 

if(z)-- a(T(1, z)) J(l" z)-~a2 1 (33) 
= 

Together with Eqs. (30) and (19), Eq. (21) implies an expansion in 
powers e" also for the current density, 

j(p, z) = ~~ , z) + elja(p, z) + ... 

=aoEo(p,~:)+eao Ex(p ,z ) -X~Eo(p,~)  E2(p , z ' )& '  + . . .  (34) 
8 
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which, after integration according to Eq. (31), results again in a corre- 
sponding expansion for the current I(r)=e~ .... Inserted 
into Eq. (33), these expansions lead to 

j0(1, z)rca 2 l 

~('~) ~< ~~176 + ~ ( ~ )  + . . . .  7o(-~) 

Ii(z) (jo(1, z)rca 2 j~(1, z) rca2~ 
+ ~ ~ \ 7o~i x~(~) /I + " (35) 

With the help of Jo(P, ~) from Eq. (34), and using for Eo(p, ~) the result 
of Eq. (26), which assumes a voltage jump at r = 0, we find, after studying 
the bounds of the occurring sums, a relatively sharp estimation of the domi- 
nant error term Ao(r ) by 

Ao(Q<~d~(~)=I(2p+ l)(exP {2-~+ l } - - l ) l  1 (36) 

The variation of A~-(z) is shown graphically in Fig. 3. For  the typical value 
p = 5, the relative error, which results from disregarding the skin effect, is 
below 1% after ~ ,,~ 6.5. The quantity p, Eq. (8), and thus the relation b/a 
(see Fig. 1 ) have an important influence on the decay of the skin effect. The 
greater the area enclosed by the electrical circuit, the greater is the pene- 
trating magnetic flux, and the greater is the induced, oppositely directed 
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Fig. 3. Variation of d~(r), which is an upper limit of the zeroth-order 
error term, as a function of the normalized time z for different values of 
p = ln(b/a) according to Eq. (36). 



482 Loh6fer 

electric field that delays in every filament of the wire the increase in 
current to its final value. Note, however, that do(z) do not account for the 
temperature-and thus time-dependent change of the electrical conductivity. 

The zeroth-order term Ao(z) vanishes for ~ -~ ~ .  This is different for the 
corresponding first-order term A I(~), which accounts for the temperature- 
dependent change of the electrical conductivity. The reason for this 
behavior has already been discussed (end of Section 3). Up to the first 
order in e, the long-time behavior [-on the time scale of Eq. (6)] of the 
systematic error can be estimated by 

A(z ~)<~-~Z ~ --~e (37) 

The constant Zo was defined in Eq. (16). Provided that the right-hand side 
of Eq. (37) is smaller than the tolerated measurement error, the remaining 
nonuniformity of the electric field for z > 1 has no significant influence on 
the measurement value of the electrical conductivity. 

5. S U M M A R Y  

We used analytical methods to study the influence of a nonuniform 
electric field on the measurement of the electrical conductivity in pulse 
heated wires. Two causes for nonuniformity have been taken into account: 
switching-on of an external voltage source and temperature-dependent 
change of the electrical conductivity. The simultaneous consideration of the 
Maxwellian and the heat conduction equations resulted in a nonlinear dif- 
ferential equation for the electric field. This has been solved by expansion 
in powers ofe [see Eq. (18)], which implicitly supposes that e is a small 
quantity. From a practical point o.f view, this has been justified a posteriori 
by the result of Eq. (37), which shows that only a small e keeps the 
nonuniformity of the electric field in the wire, and thus the systematic 
measurement error, small, after the transient skin effect has decayed. 

We studied in the preceding sections the behavior of the electric field 
on a time scale ord(a2#oao) ~ 10-7 s, on which the transient skin effect due 
to switching-on takes place. This permitted the heat conduction in the wire 
to be neglected since it is a comparatively slow process. Under these condi- 
tions, there are two main causes that may give raise to systematic errors 
during measurements of the electrical conductivity. There is at first the 
transient skin effect after the switching-on, which has a strong influence, 
but only during the first few z's [see Eq. (36)]. Then there remains a 
steady-state field nonuniformity, the origin of which is discussed at the end 
of Section 3. Its influence is negligible as long as the experimental condi- 
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tions result in a small e [see Eq. (37)]. This condition, however, might be 
violated for very high externally applied voltages during submicrosecond 
pulse-heating experiments. 

Besides the above-mentioned time scale of Eq. (6), which is intimately 
connected with the electric field equation, Eq. (5), there exists another, 
larger time scale, which is characteristic for the temperature field equation, 
Eq. (11), on which heat conduction takes place. The real, steady-state 
long-time behavior of the electric field occurs on this scale. Since heat 
conduction flattens the electrical conductivity gradient across the wire, it 
possibly also reduces the existing field nonuniformity. But its real influence 
on electrical conductivity measurement is still unknown. Another open 
problem that can probably be estimated by analytical methods concerns 
the corresponding influence of the enlargement of the cross section of the 
wire due to the temperature-dependent volume expansion. 
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